Hamiltonian Tournaments and Gorenstein Rings
نویسندگان
چکیده
Let Gn be the complete graph on the vertex set [n] = {1, 2, . . . , n} and ω an orientation of Gn , i.e., ω is an assignment of a direction i → j of each edge {i, j} of Gn . Let eq denote the qth unit coordinate vector of Rn . Write P(Gn ;ω) ⊂ R n for the convex hull of the (n 2 ) points ei − e j , where i → j is the direction of the edge {i, j} in the orientation ω. It will be proved that, for n ≥ 5, the Ehrhart ring of the convex polytope P(Gn ;ω) is Gorenstein if and only if (Gn;ω) possesses a Hamiltonian cycle, i.e., a directed cycle of length n.
منابع مشابه
Gorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملAN EXTENDED NOTION OF THE GRADE OF AN IDEAL, AND GORENSTEIN RINGS
In this paper we shall apply modules of generalized fractions to extend the notion of the grade of an ideal, and to obtain characterizations of Gorenstein rings.
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملAmalgamated duplication of some special rings along an ideal
Let be a commutative Noetherian ring and let I be a proper ideal of . D’Anna and Fontana in [6] introduced a new construction of ring, named amalgamated duplication of along I. In this paper by considering the ring homomorphism , it is shown that if , then , also it is proved that if , then there exists such that . Using this result it is shown that if is generically Cohen-Macaulay (resp. gen...
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2002